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Abstract-The compressible, turbulent flow about an axisymmetric body was numerically studied using 
the MacCormack unsplit explicit algorithm applied to the mass-average Navier--Stokes equations solved 
in conjunction with the k+ turbulence model of Jones and Launder. Numerical predictions of total body 
drag (pressure drag, skin friction drag, and base drag) were made for an axisymmetric body six diameters 
in length, with and without a boattail. Surface pressures and viscous layer profiles are compared with 
available wind tunnel data and are found to be in good agreement for both geometries. The Golden Section 
optimization method was used to optimize the body boattail angle for minimum drag. The solution 
method can serve as a tool for preliminary design analysis where the relative merits of utilizing boattails 
on axisymmetric afterbodies is being considered. 

1. INTRODUCTION 

As supersonic aircraft and missiles reach higher velocities and require greater performance, the 
procedures used for their design must be evaluated. New performance requirements often dictate 
new designs, and previous methods of analyzing aerodynamics may need improving. 

A major constraint on the performance of an aerodynamic body is drag. A supersonic body will 
have major drag contributions from pressure drag, skin friction drag, and base drag. Obtaining 
valid predictions for these drag components, and thus having valid tools for design purposes, is 
difficult at best. Specifically, the prediction of base drag in an accurate manner has long eluded 
the practicing engineer. 

Some of the difficulties in the prediction of base drag have included: (1) the upstream effects of 
the presence of a corner in various Mach number flows at different Reynolds numbers, (2) the 
effects of separation, compression and/or expansion, and shock formation in the vicinity of the 
corner, (3) the structure of the recirculating zone, (4) the formation and structure of a mixing 
(shear) layer between the recirculating zone and the external flow, and (5) the effects of the 
configuration (e.g., boattails, fins, etc.). 

These complexities and the difficulties associated with accurately predicting the flow processes 
have led researchers to utilize various semi-empirical prediction methods which were valuable but 
very limited in their application [I]. The recent advances in computational capabilities, namely 
increased computer memory size and processing speed, as well as improved numerical methods, 
have enabled attempts at solving the Navier-Stokes equations for the flow around a base. Early 
predictions were limited in size and scope by the solution algorithm method and by the capabilities 
of the computer, but eventually practical solutions were obtained. Table 1 presents a summary of 
recent numerical studies of the flow over backward-facing steps and axisymmetric boattailed 
bodies, with and without jet plumes [2-171. Many of these works were necessarily limited in scope 
by computational restrictions. Some researchers included the effects of the forebody by using 
inviscid computations in conjunction with solutions of the viscous fluid flow equations in a zonal 
approach (the inviscid solutions were used to provide the inflow boundary conditions for the base 



Table I. Survey of base Row computations 

Researcher Geometryt Modelf Remarks 

Deiwert 121 	 3D I Thin shear-layer 

Deiwert [3] 	 2D I Thin shear-layer with je.t 

Deiwert and Rothmund (41 3D I Thin shear-layer with jet 

Gosman et al. [S] 	 2D 2 

Hah and Lakshiminaryana [6] 3D 2-3 Curvature effects 

Hoist [7] 	 2D I With jet 

Hutton and Smith [S] 2D 2 

Mansour t-1 al. 191 2D 2 

Mikhail t-f a/. [IO] 	 2D I With jef 

Oh 	 and Harris [I I] 3D I 

Pope and Whitelaw [121 2D 2. 3 
Rhie and Chow 113) 2D 2 

Sahu er ul. 1141 	 2D I Thin shear-layer 

Sahu er al. [IS] 	 2D I Thin shear-layer with jet 

Sturek et al. [I61 	 3D I 

Vanka 1171 	 2D 2 

Wemberg er al. [IS] 2D 3 

tNote: 2D includes both IWO dimensional and axisymmetric. 

$Types of turbulence models. 

I = Algebraic eddy-viscosity, 2 = differential eddy-viscosity, 3 = Reynolds stress. 

region). Only recently have computations been made for the entire flowfield about an axisymmetric 
body using the average Navier-Stokes equations in conjunction with a turbulence model capable 
of predicting the recirculating flow found in the base region. 

A logical next step in this evolution is to begin using these computations as a practical 
preliminary design tool, especially as a method for optimizing geometries for minimizing drag. The 
goal of this research is to numerically solve the Navier-Stokes equations for compressible, turbulent 
flow as applied to an axisymmetric body with a boattailed base. The boattail angle is then optimized 
to determine the geometry for minimum total drag (including pressure drag, skin friction drag, and 
base drag). As these types of applications are improved and extended, the modern designer will 
have a valuable tool to go along with wind tunnel testing as new configurations are explored for 
use on aircraft. 

2. NAVIER-STOKES EQUATIONS FOR COMPRESSIBLE FLOW 

Many researchers have applied various simplified sets of fluid dynamics equations to model the 
flow around axisymmetric bodies. However, due to the complexity of the fluid flow in the base 
region of an axisymmetric body, the Navier-Stokes equations with an appropriate turbulence 
model are required to accurately describe the fluid motion. Base flow is inherently turbulent and 
accurate results require a detailed description of various turbulence quantities. But current 
computer memory storage size and computational speeds prohibit analyzing turbulence at its 
fundamental scales for full-scale configurations. At present, even the largest computers can only 
simulate turbulence for simple flows with highly constrained flow parameters [19], and methods 
utilizing chaos theory were developed to enhance understanding of the fundamental processes of 
turbulence [ZO]. Due to these restraints, the full Navier-Stokes equations must be used in averaged 
form with some type of semi-empirical turbulence model to effect closure of the set of equations. 

2.1. 	Mass-averaged equation 

The intricate equations which result from Reynolds-averaging the compressible flow equations 
can be avoided through the use of mass-weighted variables. Hesselberg [21] first used mass-weighted 
variables for atmospheric studies, and later Favre [22,23] generalized their use for the equations 
of compressible fluid motion. Mass-weighting is accomplished by decomposing the variables as 

A =A+A” 

where 

A-mass-weighted quantity E 5 

A “-fluctuating quantity 



and 

pA”=O 	 (2) 
The mass-weighted average is chosen so that the average flux of mass across a streamline vanishes 
if mass is conserved. This is accomplished by taking the mass-weighted average of velocity, total 
energy, and temperature, while taking the Reynolds-average of density, pressure, and viscosity. 

2.2. 	 Turbulence &sure 

Most numerical investigations of base flows either use algebraic or differential ‘eddy-viscosity’ 
turbulence models to attain turbulence closure (see Table 1). Although some investigators have 
utilized stress transport models for recirculating flow, Pope and Whitelaw [12] showed that the 
added expense in computation time for solving the multi-equation models was not justified if only 
mean-flow properties were being considered. And while algebraic models provide a computation- 
ally inexpensive method for calculating base flows, they do not possess the ability to accurately 
calculate recirculating flow [24,25]. 

Several two-equation modes exist and usually include one equation to model the turbulent kinetic 
energy, L, and another equation to model turbulent dissipation, mixing length, or some combi-
nation of the two. Several investigators have compared the relative abilities of the various 
two-equation models to predict base flow [l&26]. Most of the comparisons show only small 
differences in predictive capabilities among the models, with the k-c model being shown to have 
the best overall applicability. Therefore, closure of the equations of motion will be attained through 
the use of the kt turbulence model [27,28] and the notion of turbulent eddy-viscosity. 

The k+ turbulence model was developed for an incompressible fluid and has been shown to be 
very good for representing flows of a complex nature (such as recirculating flows). Morkovin [29] 
has hypothesized that the basic turbulence mechanisms which are found in incompressible flows 
are identical in nature to those found in compressible flow. Morkovin based his hypothesis on the 
concept that the maximum turbulent velocity fluctuations were approx. 20% of the mean velocity. 
Therefore, the velocity fluctuations would be subsonic as long as the freestream Mach number was 
below five. Rubesin [30] has shown that the use of the k-c turbulence model developed by Jones 
and Launder and interpreted with mass-weighted variables in compressible flow leads to a 
turbulence representation which is generally accurate for flowfields at Mach numbers below five. 
Liakopoulos [31] showed that the k-c model was highly accurate in predicting viscous layer 
turbulence 	 quantities in compressible flow. 

The turbulence viscosity relation for the k+ turbulence model is 

The turbulent kinetic energy, k’, and the turbulence dissipation rate, L, are represented by modeled 
differential equations in Ref. [27]. The values used for the empirical constants in incompressible 
flow closure are from the original Jones and Launder model [27,32] as well as a model modified 
for recirculating flows by Hutton and Smith [8]. Both models were utilized for comparison with 
measured data (results are shown in Section 5). 

The turbulence closure equations are also modified in order to simplify the numerical boundary 
conditions by allowing the turbulent dissipation to go to zero at the wall [27,32]. The numerical 
constants are modified by the turbulence Reynolds number, 

(4) 

which allows the turbulence model to give reasonable results for small values of R, near a solid, 
stationary surface. 

The Reynolds stress and temperature fluctuations are modeled after the turbulent mixing 
coefficient introduced by Boussinesq [33]. The use of this coefficient assumes that the turbulent 
viscosity, p,, can be based on the concept of Stoke’s Law for laminar flow. The eddy-viscosity 
relationship for the k-c turbulence model is [33] 

-LJu:‘u; = -s,$TE+ 2/.& 	 (5) 



where 

$j = f(C,j + rij.i) - fQ&, (6) 

This relationship differs from its incompressible counterpart in that the mean rate-of-strain tensor 
is modified by the mean divergence, which is not zero in compressible flow. The laminar viscosity, 
ji, is computed using Sutherland’s formula. 

2.3. Equations of fluid motion 

When the compressible Navier-Stokes equations and the k-r turbulence model are written for 
axisymmetric flow and vectorized, they take the form 

aQ aE aF 

x+ar+z+H=O (7) 


where the vectors are given by 

(8) 

PC 


I=, 


-
E=r 

z-i,(/Lc+p) + q, - 17,;- z&T,, (9) 

(10) 
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-p+& 
0 

(11)0 


r(P - PC) 


(C, P - c,pc 

ji=PRF (12) 



where the shear stress terms, the heat flux terms, the turbulence production term, and the constants 
are defined in Ref. [34]. These equations, together with the k+ turbulence model, are equivalent 
to the compressible Navier-Stokes equations with mass-weighted variables developed by Rubesin 
and Rose [35] who used enthalpy rather than temperature for the energy equation. 

3. NUMERICAL FORMULATION 

The mass-averaged Navier-Stokes equations for axisymmetric, compressible flow, including the 
turbulence model, are given by six coupled, non-linear partial differential equations. These 
equations do not have a general closed-form analytic solution due to a lack of knowledge of the 
solution of non-linear partial differential equations. Consequently, researchers employ various 
numerical schemes to obtain solutions for specific problems. The unsteady compressible 
Navier-Stokes equations are a set of hyperbolic/parabolic partial differential equations which 
require the use of specialized numerical algorithms for their solution. A finite difference algorithm 
will be considered due to the proven capability of these algorithms in solving the unsteady 
compressible Navier-Stokes equations. 

3.1. MacCormack ‘s unsplit explicit algorithm 

Applying the unsplit explicit MacCormack scheme [36] to these vectorized equations [equations 
(7-l l)] results in the following two-step algorithm 

Predictor step: 

Q:;’ = Q:,-; (C’,+, - E:‘) - g (Fy+ lj - F:‘) - AtHy, (13) 

Corrector step: 

-- - __ 
Q;;‘=z$Q;~+~++’ - EyJ+_‘,) - ; (Fyi ’ - F:_+,:) - AtHyj+ ’ (14) 

-1 
where quantities with an overbar represent predicted values. This explicit scheme is second-order 
accurate in space and time. Forward differences are used in the predictor step and backward 
differences are used in the corrector step. 

Several derivatives appear in the viscous terms of E, F, and H, and care must be taken in their 
differencing in order to maintain second-order accuracy. The r-derivatives in E are differenced in 
the opposite direction of the predictor step, while the z-derivatives are central-differenced. 
Likewise, the z-derivatives in Fare differenced in the opposite direction of the predictor step, while 
the r-derivatives are central-differenced [37]. All viscous terms are calculated only in the predictor 
step using second-order accurate central differencing in order to reduce the computation time. The 
resulting viscous terms are then applied to both the predictor and corrector steps, resulting in 
first-order time accuracy. 

3.2. Time step calculation 

Explicit algorithms require a restriction on the time step in order to insure stability. This time 
step restriction is the reason explicit methods require greater computational work to progress a 
finite amount of time than implicit methods. Due to the complexity of the equation set, no stability 
analysis for the MacCormack scheme applied to the compressible Navier-Stokes equations is 
available. However, Tannehill et al. [38] empirically modified the CFL stability condition, and this 
approach is used in the present computations. The time step is calculated at each grid point and 
the smallest At in the computational region is used to advance the solution. 

3.3. ArtiJicial smoothing 

When using finite difference algorithms to capture shocks in compressible flow, a non-linear 
instability is encountered in the vicinity of the shock [39]. The instability is caused by the large 
gradients in the f.ow variables which exist across a shock. These large gradients create oscillations 
in the numerical treatment due to truncation error. In the case of the Navier-Stokes equations, 
this oscillation could be reduced by utilizing an extremely fine mesh, which is usually impractical 
for most applications, 



The non-linear instability is overcome by adding an artificial damping term to the equations of 
fluid motion which will “smooth” the shock gradient over a number of grid points. The damping 
term is usually of fourth-order so that it will only be added where large gradients exist, the majority 
of the flowfield being relatively unaffected by the smoothing term. 

The artificial damping term used in this work was developed by Hoist [7] as a modification to 
the “product” fourth-order smoothing used by Tannehill et al. [38]. The damping is equivalent to 
adding an artificial viscosity of the form 

to the finite-difference equations, where c, is a constant, which must be less than or equal to 0.5 
to maintain stability [7]. 

3.4. 	 Computational plane and grid generation 

The physical plane grid is transformed to the uniform computational grid by applying a spatial 
transformation followed by a grid clustering. The grids were calculated using an error function 
algebraic stretching scheme developed by Oh [40,41]. The details of the transformation and grid 
clustering are presented in Ref. [34]. A grid resolution study was performed and is reported in a 
later section. 

3.5. 	Boundary conditions 

The boundary conditions required for the numerical treatment of compressible, turbulent flow 
over an axisymmetric body can be divided into five types (see Fig. I): inflow, outflow, upper 
inflow/outflow, centerline, and wall. 

Since the inflow will be entirely supersonic, the inflow variables may be prescribed to represent 
a uniform freestream flow, i.e., p, fir, li;, and i: are prescribed, while p and E are calculated using 
the Perfect Gas Law and the definition of total energy. 

The outflow boundary will be prescribed far enough downstream from the body (approx. 20 
body diameters downstream from the base) for the entire plane to have recovered to supersonic 
conditions; therefore, the outflow variables will be extrapolated. This method has been found to 
work well with supersonic flow and has a good physical basis [39]. p, u’,, i&, and I? are linearly 
extrapolated using the flux terms, Q, which is defined in equation (8). f and p are calculated using 
the Perfect Gas Law and the definition of total energy. 

The upper boundary is assumed to be an inflow/outflow surface which may be treated with a 
simple characteristic solution [39]. Physically, this boundary condition is approximated as an 
inviscid boundary, which is justified if the boundary is far removed from any viscous regions, and 
the viscous terms are deactivated near the boundary. 

Care must be taken in defining the boundary condition for the flow centerline. The use of 
cylindrical coordinates creates a difficult condition since r = 0 at the centerline, and certain terms 

UPPER INFLOW/OUTFLOW 

INFLOW 	 OUTFL 

WALL 

CENTERLINE 

Fig. I. Physical plane boundaries. 



in the governing equations require special attention [39]. The correct boundary conditions at the 
flow centerline are 

(15) 

As an example of how to handle the centerline conditions, consider the mass conservation equation, 
and divide bv r to vield 

Applying the chain rule to the last term in equation (16) yields 

(17) 

and using L’Hopital’s rule, the last term in equation (17) may also be reevaluated to yield a mass 
conservation equation valid at r = 0 

(18) 

This operation may be performed on all of the radial derivative terms in the mass, momentum, 
energy, and turbulence equations. The d/dr derivatives are taken using a one-sided, second-order 
accurate formula, with appropriate reflection values. 

The boundary conditions on the wall are relatively straightforward, with the exception of the 
boundary conditions at the sharp corner at the base. The boundary conditions along the wall reflect 
that the fluid does not slip along the surface, i.e., li, = 6, = 0. The wall surface is assumed to be 
adiabatic so that the boundary condition for temperature is given by FWT,, = F,J+, . This is justified 
for approximating wind tunnel conditions where the model reaches an equilibrium temperature 
after the tunnel has been operating for a short period of time. The final wall boundary condition 
required is a condition for either the pressure or the density. An approach which has been found 
to work well for high Reynolds number viscous flows is to assume that the pressure gradient at 
the wall is invariant [42], iTp/iTn = 0. This provides the necessary wall boundary conditions, along 
with the equation of state to provide the resulting value of the density. 

The sharp corner at the base requires special attention in order to avoid inappropriate flow 
variable values being used in the numerical differencing. For example, when calculating fluid 
quantities at the grid point directly above the sharp corner, values of pressure, density, and 
temperature may be required at the wall. These values should correspond to the flow along the 
body, not the flew at the base. Similarly, when differencing is being done at the grid point 
immediately behind the sharp corner, the values of pressure, density, and temperature must 
correspond to the base flow. 

In order to insure that the correct values of pressure, density, and temperature are used in the 
vicinity of the sharp corner, dual values of these flow variables are retained and used accordingly. 
This treatment allows for the various flow regions (wall viscous layer or base) to “feel” different 
fluid properties at. the sharp corner. 

The turbulence quantities, k’and 6, are set to very small values at the outer edge of the flow as 
is appropriate for freestream conditions. The value of & is set equal to zero at the wall, which 
corresponds to the fact that the velocity fluctuations must vanish at a solid surface. The value of 
c is set equal to zero at the wall by adding terms to the differential equations governing the 
turbulence model, which is computationally advantageous [27]. 

4. OPTIMIZATION TECHNIQUE 

The goal of any mathematical optimization is to extremize (minimize or maximize) some 
objective function, F. The objective function must be expressible as a single value for the 
optimization technique to operate, but F may be a function of several design variables, 
x,,xz,.. . , A’, , which are free constants selected in order to minimize F [43]. In principle, as many 
design variables, N, as desired may be used. However, in practice the number of design variables 
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Fig. 2. Axisymmetric body geometry. 

is kept at a minimum since the optimization efficiency and computational time for most algorithms 
varies proportionally as N2 [44,45]. 

4.1. 	Aspects of drag optimization 

Before choosing a minimization algorithm, the general aspects of the problem to be solved must 
be defined. By evaluating the various minimization techniques with the specific problem in mind, 
a good choice of technique can be made. The goal of this computation is to predict the total drag 
of an axisymmetric body at zero angle of attack in compressible turbulent flow. The drag will be 
determined as the sum of the pressure drag, skin friction drag, and base drag. 

The only design variable which will be considered for optimization is the boattai1 angle, 0 (see 
Fig. 2). The boattail length, zboatrwill not be considered as an additional design variable since 
experiments have shown that body drag decreases approximately linearly with increasing boattail 
length [46]. An optimization of boattail length would always result in the largest constrained value 
of boattail length. As the boattail angle varies, the drag components due to pressure and skin 
friction will vary, yielding a minimum value at some boattail angle within prescribed constraints. 
The goal of the optimization is to obtain the body shape which minimizes drag for a given geometry 
type, therefore the objective function is the total drag. Since only one design variable is being used, 
it will be helpful to know a priori the general relationship of drag with the boattail angle. 

Data from various wind tunnel investigations of boattail body shapes at supersonic speeds show 
a consistent variation of drag with the boattail angle (Fig. 3) [46]. Since this case represents a single 
dimension design space which is known to be unimodal, the search method can be chosen in order 
to efficiently obtain the minimum objective function, with the overall goal being to minimize total 
computation time (both the time of operating the search method and the time of calculating the 
objective function). Based on this knowlege of the design space, a reasonable search method would 
be an elimination technique, especially since all of the gradient methods would require analysis of 
VF, a very time consuming operating (each computation of F will require one converged solution 
of the MacConnack algorithm-minimizing the number of evaluations of F is paramount to overall 
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Fig. 3. Variation of drag with boattail angle. 



computational efficiency). The Golden Section method will be used for this optimization due to 
its robust nature and capability to locate a minimum without using derivatives. 

4.2. 	 The Golden Section optimization method 

The Golden Section search technique [47] is a discrete search method which utilizes previously 
determined infomlation about the objective function in order to reduce the design space search 
area. The method requires a priori knowledge that the objective function is unimodal (has a single 
extremum) within the constrained section of the design space. The biggest advantage of the method 
is that it does not require the use of gradient information, which in the present case would require 
several evaluations of the objective function (drag) for each search step. 

Consider an objective function, F, with one design variable, X, and a known minimum between 
two design variable constraints, a, and a3 (see Fig. 4). Any three x-values, a, < a2 c a3, form a 
bracket around the a corresponding to F,,,, if F2 < min(F, , F3). Once this search bracket is located, 
the design space may be reduced by sectioning. 

The ratio a3 - a2: a2 - a,, is used to calculate the ratio r : 1 (where T > 1). An additional point, 
a,, is inserted in order to reduce the search bracket, and both potential new brackets, (a,, a,, a4) 
or (x2, aq, a3), are required to have intervals of the same ratio, r : I. By symmetry, a3 - a,, = rZ - a,, 
and the ratio a4 - a2:a2 - a, yields that t must satisfy 1 = r’/(r + l), i.e., that T is the positive root 
of t* - T - I = 0 (T = (1 + ,,/5)/2). The Golden Section method evaluates F at the new point and 
determines the new reduced interval which maintains the ratio. This process is repeated until the 
minimum value of F is found within some convergence criteria [47]. 

The number of iterations required to compute the minimum value of the objective function is 
dependent on the desired accuracy. For example, using the geometry of interest, the Golden Section 
method could theoretically locate the boattail angle for minimizing drag within 9 iterations for 1% 
accuracy, and within 5 iterations for 10% accuracy. 

5. COMPUTATIONAL RESULTS 

In order to have confidence in the results of the boattail optimization, the numerical code should 
be validated against available experimental data. If possible, especially when computing turbulent 
flow, a detailed comparison of flowfield quantities should be made. Unfortunately, very few 
experimental results exist for flowfield quantities in supersonic flow. This is partially due to the 
difficulty in measuring turbulent quantities in compressible flow, and the difficulty in truly 
understanding what is being measured. Once the code is validated, the numerical optimization will 
be run in order to determine the optimum boattail shape for minimizing overall drag. Due to the 
lack of data, there will be no way to exactly validate the optimized geometry flowfield 
characteristics. It is hoped that the validated code gives reasonable results at off-validation 
conditions. 

Fig. 4. The Golden Section search method. 



5. I. Experimental data 

The Army Ballistic Research Laboratories conducted a series of wind tunnel tests which were 
intended to provide a wide range of experimental data for axisymmetric bodies with boattails 
[48-511. These data were specifically taken for use in comparing with numerical predictions, and 
include many of the measurements which are useful for that purpose. 

The geometry chosen for comparison is an axisymmetric body six diameters in length, with 
secant-ogive forebody/cylindrical afterbody, with and without a boattail. The dimensions corre-
sponding to Fig. 2 are: r,,= 18.88, z,,,= 3.0, zcylb= 2.0, z,,,,~,= 1.0. r* =0.38, and rmax=0.5, 
These dimensions are in body diameters-the body diameter is 5.715 cm (2.25 in)-and result in 
a 7” conical boattail. Several tests were conducted to measure both surface pressures and boundary 
layer quantities at Mach 3.0. Additionally, surface pressures were also measured at Mach 2.0 and 
Mach 4.0. 

The wind tunnel tests were run at a nominal Reynolds numbers of 6.5 x lo6 (based on the body 
length). The pressure data were taken from 10 pressure taps made of 0.65 cm tubing approx. 3.0 m 
in length. Pressures were measured at axial locations along the body of Z/D = 0.89, 1.56,2.22,2.79, 
3.13,3.56,4.22,4.88, 5.32, and 5.77. The turbulent boundary layer data were taken using an impact 
pressure probe. 

5.2. 	Grid resolution 

In order to properly resolve the important flowfield features, it is necessary to cluster grid points 
in regions of high gradients of the flowfield variables. As was stated previously, the grid clustering 
is accomplished using an error function algebraic stretching function which enables grid spacing 
to vary in both the axial and radial directions. 

The particulars of the flowfield being solved must be taken into account when placing grid points; 
more grids are required in the shock layer, viscous layer, and baseflow region than are required 
in the regions far away from the body. In fact, the grid spacing near the body must be several orders 
of magnitude smaller than the freestream spacing in order to resolve the complexities of the viscous 
layer, with at least one grid point being placed within the laminar sub-layer of the viscous layer. 
If this were not done, then the inner portion of the viscous layer would not be properly modeled. 

The grid for the body with a 7” boattail is shown in Fig. 5. The grid has 121 points in the axial 
direction and 81 points in the radial direction, with approx. 70 axial points used to resolve the flow 
features of the body, and 30 radial points used to resolve the viscous layer. Additional radial points 
were required due to the presence of the base region, which contains approx. 20 radial points; 50 
of the 81 radial grid points are contained within a region very close to the body. 

The radially-spaced grid clustering near the body for the viscous layer is quite apparent, and this 
clustering continues downstream of the base in order to capture the important features of the shear 
layer in that region. Also, finer grid clustering in the axial direction is used at the base in order 
to more accurately predict the effects of the base on the recirculation region which forms 
immediately behind the base. The base region grid with a 7” boattail is shown in greater detail in 
Fig. 6. Finally, a small amount of grid clustering is used near the vertex of the forebody, as shown 
in Fig. 5. This is done in order to better resolve the high gradients which occur at the stagnation 
point at the nose (the stagnation point initiates the shock wave which begins at the nose). Without 
this clustering, grid points near the nose would be forced to difference flow variables from points 
in the freestream, across the shock, and into the initial viscous layer. 

The grid was refined in order to strike a balance between the computational time and the 
accuracy of the solution; the greater the grid resolution, the longer the computation time. In order 
to gain confidence in the selection of the grid, three separate grids were used to predict the drag 
of the axisymmetric body. A coarse grid (61 x 41), medium grid (121 x 81), and fine grid 
(18 1 x 12 1) have been used for the prediction. The coarse grid converges to within one percent of 
the final solution in approx. 400 time steps, reaching a final value of C, = 0.375. However, this 
solution is unreliable due to the coarseness of the grid in the vicinity of the body and base region. 
Large gradients in the flowfield variables are probably not properly resolved by this grid. The 
medium grid has a slower convergence rate than the coarse grid, taking approx. 700 time steps to 
converge to within one percent of the final solution. Notice that the final drag coefficient result 



Fig. 5. Physical plane grid with 7” boattail (121 x 81) 

for the medium grid (C, = 0.355) is less than the result for the coarse grid by nearly 10 percent. 
Finally, a fine grid solution shows that the drag coefficient value of Cn = 0.355 is a good solution. 
The fine grid has an even slower convergence rate than the medium grid, taking 1000 time steps 
to reach within one percent of the final solution. The medium grid yields the same qualitative results 
as the fine grid in less computation time, and will therefore be used for the remainder of the 
numerical predictions. 

5.3. 	Numerical/experimental considerations 

The wind tunnel model had a strip of grit 4.06 cm from the nose tip in order to induce transition 
to turbulent flovv. This condition was simulated by allowing only laminar viscosity to be calculated 
ahead of the transition point, with the turbulent viscosity being calculated behind the transition 
point. The turbulent viscosity is ramped up to the predicted viscous level over a five grid axial 
distance. This gives better results by not allowing a step function of turbulent viscosity, and better 
simulates the transitional nature of the viscous layer, which occurs over a finite length. 

5.4. 	Numerical predictions for Mach 3.0 

The primary results for which test data are available are at a freestream Mach number of 3.0. 
Further validations with available experimental data were done at Mach numbers 2.0 and 4.0 
before optimizing the boattail angle [34]. Data are available for boattail angles, 0 and 7”, with both 
cases being computed. 

Fig. 6. Physical plane grid near base with 7” boattail. 



Fig. 7. Nose shock position shown by Mach number, M, = 3.0. 

General features of the flowfield must be examined in order to gain confidence in the solution. 
Namely, there should be an attached oblique shock wave at the nose. as well as a well-defined 
recirculation region at the base, Figure 7 shows Mach number c5ntours in the vicinity of the 
forebody. The shock wave is apparent in the region where the contours coalesce; shock waves 
decrease Mach number and increase both pressure and density discontinuously. 

Pressure ratio profiles across the nose shock wave are presented in Fig. 8. The profiles are shown 
at four locations along the body length, Z/D = 0.403, 0.823, 1.257, and 1.692. The profiles show 
a large gradient in pressure as the freestream flow encounters the shock and is compressed to nearly 
double the freestream value. The shock structure is maintained along the forebody length, with the 
shock strength decreasing slightly from Z/D = 0.402 to Z/D = 1.692. The viscous layer and shock 
layer regions are visible at axial locations aft of Z/D = 0.823. 

The next region of the flow which should be examined is the base. This region contains very 
complex flow dynamics due to thf : 15~ pressure created a tt he base. This low Pressure causes the 
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Fig. 8. Shock pressure gradients, M,, = 3.0. 
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Fig. 9. Base recirculation region separating streamline, M, = 3.0, Q = 0 

flow which is coming over the top of the base to recirculate and expand, accelerating the fluid which 
flows over the top of the recirculation region. The separating streamline of the recirculation region 
is shown in Fig. 9. The Jones and Launder model [27] predicts the flow reattachment to the 
centerline to be I .46 diameters downstream of the base. However, Pope and Whitelaw [I21 found 
that the original Jones and Launder model overpredicts the spreading rate of the turbulent shear 
layer, and therefore underpredicts the distance to the stagnation point of the dividing streamline. 
The Hutton and Smith model [8] yields an increased reattachment length of 1.71 body diameters. 
The predicted value of the length of the recirculation region is in qualitative agreement with 
numerical predictions at supersonic Mach numbers and similar Reynolds numbers by Sahu et al. 
[14, 151. Based on Pope and Whitelaw’s findings concerning the overprediction of the turbulent 
shear layer spreading rate, the Hutton and Smith model was used for the remaining predictions. 

Figure 10 shows velocity vectors drawn in the base region (the vector lengths are proportional 
to the velocity at that grid point). A companion visualization of the flow is shown by Mach number 
contours (Fig. II:). These contours show that the base region has an area of very low fluid velocity 
adjacent to the base. Also, the expansion of the flow around the corner can be seen to increase 
the speed of the flow above the recirculation region to values above freestream levels. The low 
pressure region extends well away from the base, then slowly recovers to near freestream levels as 
the higher velocity fluid feeds down over the recirculation region. 

Surface pressure measurements have been made on the geometry of interest at Mach 3.0 [51]. 
Figure 12 shows the comparison of surface pressures at various axial locations along the body. The 
comparison between the measured data and the numerical prediction is very good, especially the 
prediction of the expansion which occurs in the vicinity of the shoulder of the nose, which is located 
at Z = 3.0 diameters. The present numerical predictions are compared with a previous inviscid 
prediction by Reklis and Sturek [51]. While the overall accuracy of the two predictions is similar, 
the Navier-Stokes prediction yields better results than the inviscid predictions in the vicinity of 
body surface discontinuities. This is to be expected as the Navier-Stokes prediction includes the 
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Fig. 1I. Mach contours in base region, M, = 3.0, 8 = 0” 

interaction between the viscous layer and the flow expansion. These results are also in agreement 
with comparisons between a Parabolized Navier-Stokes prediction [52] and the inviscid results. 

Unfortunately, the wind tunnel test did not include the measurement of base pressure; the 
predicted pressure variation across the base is shown in Fig. 13. As can be seen, the base pressure 
is a maximum near the centerline, where the recirculating flow stagnates at the base. As the flow 
turns upward along the base, lower pressures are exerted over the upper regions of the base. The 
average predicted base pressure along the base is p/p, = 0.336. Sidney [53] presents measured base 
pressure data from several sources for Mach numbers ranging from 1.5 to 5.8. At Mach 3.0 the 
empirical curve-fit yields a base pressure value of p/p, = 0.350, which compares well with the 
present prediction. The predicted value also compares well with the value given by simple 
supersonic theory for the pressure coefficient of base flow [54] 

C,= -$ (19 
OCI 

Equation (19) yields a value of p/p, = 0.300. This theory is mainly valid at higher Mach 
numbers, but gives a valuable reference point for determining the accuracy of the numerical 
prediction. 
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Fig. 12. Surface pressure comparison, M, = 3.0, 8 = 0”. 
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Fig. 13. Pressure variation over base, M, = 3.0, 8 = 0”. 

Mach and temperature profiles within the viscous layer are presented in Figs 14 and 15. The 
profiles are presented for three axial locations, Z/D = 3.33, 4.44, and 5.56 diameters. The profiles 
show that the turbulence model produces reasonable results in the viscous layer. Since the main 
results required of the code are the gross forces acting on the body, it appears that the turbulence 
model is doing an adequate job in predicting viscous layer quantities. 

The numerical results for the 7” boattail case are now presented. The results for the shock at 
the nose are largely unchanged, as would be expected for a supersonic flow. However, the flowfield 
characteristics over the body and in the base region are quite different. The separating streamline 
of the recirculation region (Fig. 16) is smaller than that for the no boattail case (Fig. 9). In fact 
the recirculation region as predicted by the Jones and Launder model only extends 1.27 body 
diameters downstream from the base, a 13% reduction in the length of the recirculation region 
when compared with the case without a boattail. This reduction in the recirculation region is a 
direct result of the boattail; flow is being fed down into the base region at a 7” angle, and is 
collapsing over the low pressure area in a smaller distance. 
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Fig. 14. Viscous layer velocity profiles, 144, = 3.0, 8 = 0”. 
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Fig. IS. Viscous layer temperature profiles, M, = 3.0, 0 = 0’. 

Figure 17 shows the velocity contours in the base region for the 7” boattail; Fig. 18 presents Mach 
contours. Again, although the base region is qualitatively similar to the no boattail case, the 
recirculation region is noticeably smaller, with higher base pressures. Although this case shows an 
increased base pressure, overall drag is not necessarily reduced. The increase in base pressure occurs 
in conjunction with a reduced base area and an additional drag induced by the pressure acting along 
the boattail surface (Fig. 19). Also, the flow is more likely to separate along the boattail surface 
as the boattail angle is increased, which would greatly increase the body drag. Therefore, for 
boattail angles much higher than lo’:, it is highly unlikely that the boattail will be beneficial. 

The comparison of surface pressures and measured data for the 7” boattail case are presented 
in Fig. 20. The prediction compares very well with the data, especially the magnitude and location 
of the flow expansion which occurs at the boattail juncture. The Navier-Stokes predictions again 
are comparable with the inviscid predictions, The base pressure variation for this case is presented 
in Fig. 21, and shows a similar variation across the base as the no boattail case. However, the 
pressure level is higher, with an average value of p,/pp,. = 0.404. This is a result of the smaller 
recirculation region for the boattail case. 

6. DRAG OPTIMIZATION 

Now that reasonable flow solutions have been computed for the case of an axisymmetric body 
with a boattail afterbody, the optimization routine may be implemented in order to determine the 
boattail angle which gives minimum drag. A consideration when completing this optimization is 
to reduce the overall computer time; if the optimization routine were allowed to compute 5 to 10 
configurations to full convergence starting from freestream initial conditions, the computer time 
would be quite high. 
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Fig. 16. Base recirculation region separating streamline. M, = 3.0. 8 = 7’ 
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Fig. 17. Velocity vectors in base region, M, = 3.0, 8 = 7”. 

A solution to the problem of overall computational time during optimization is to allow the code 
to utilize the previously calculated flowfield information as initial conditions for the next case. The 
current code initiahzes with freestream conditions prescribed at all grid points (with the exception 
of the wall boundaries). The method must then form shocks, expansion fans, boundary layers, and 
the recirculating z.one through hundreds of time steps. If, however, the initial conditions for any 
one case were the final solution from a geometrically similar, previously calculated case, the 
computation time for the second condition would be significantly reduced. 

The Golden Section optimization method was allowed to choose the boattail angles for which 
it required objective function information (drag). The algorithm searched through a pattern of 
boattail angles as shown in Fig. 22. Note the intelligent search path, which utilizes previously 
obtained information. The algorithm obtained the minimum value of drag coefficient (Cn = 0.306) 
at a boattail angle of 7.9” in nine iterations within I% accuracy. 

In order to verify the initial assumption that the boattail length was inversely proportional to 
the drag of the body, an additional prediction was made with a longer boattail. The boattail length 
for the previous predictions of 1.0 body diameter resulted in an optimized body base radius 
corresponding to .a 7.9” boattail angle. This base radius was held constant and the boattail length 
was increased to 1.5 body diameters. The resulting drag coefficient was predicted to be C,, = 0.28 1, 
an eight percent reduction in drag when compared with the optimum drag coefficient for the I.0 
body diameter boattail. This prediction gives confidence in the original assumption, and re-enforces 
the decision to use the boattail angle as the only design variable. 

Fig. 18. Mach contours in base region, M, = 3.0, 8 = 7”. 
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Fig. 19. Contributing factors to boattail drag. 

7. CONCLUSIONS 

The MacCormack unsplit explicit algorithm applied to the mass-averaged Navier-Stokes 
equations solved in conjunction with the Jones and Launder k-t turbulence model has been shown 
to accurately predict the time-independent flowfield about axisymmetric body geometries at 
supersonic speeds. The numerical predictions were performed for a complete axisymmetric body, 
including a secant-ogive forebody, cylindrical afterbody, and conical boattail. The Golden Section 
search method was used to optimize the flowfield in order to predict the boattail angle for minimum 
overall drag (pressure drag, skin friction drag, and base drag). The optimization resulted in the 
prediction of a boattail angle for minimum drag of 7.9”, which compares favorably with available 
data for similar geometries. 
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Fig. 20. Surface pressure comparison, M, = 3.0. 8 = 7”. 
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Fig. 21. Pressure variation over base., M, = 3.0, 8 = 7”. 

The prediction of surface pressure compares well with available experimental results and inviscid 
predictions. The numerical prediction of surface pressure was an improvement over the inviscid 
results, especially in regions of body surface discontinuities (forebodycylinder and cylinder-
boattail junction). Comparisons of viscous layer profiles with available experimental data show that 
the k-c turbulence model adequately describes the viscous features of the flow. Also, the qualitative 
features of the flow are well predicted (shock waves, expansion fans, and recirculation region). 

The lack of experimental data containing flowfield information (such as viscous layer profiles, 
turbulence quantities, and flow visualization of shocks and expansion fans) for supersonic 
geometries is a great hindrance to validating a numerical code. Nietubicz [55] has found that there 
are virtually no supersonic experiments where flowfield quantities have been measured in the base 
region. An increased effort needs to be made to return to the wind tunnels and take an in-depth 
look at the fluid dynamic processes which occur in the flow around bodies at supersonic speeds. 

Numerically, there are several areas where the solution of the Navier-Stokes equations could 
be improved. The current work utilizes an inviscid “characteristic” formulation for the upper 
inflow/outflow boundary; an improvement to this boundary condition which would overcome the 
limitation of using a finite computational domain has been suggested by Jafroudi and Yang [56]. 
They recommended obtaining the asymptotic solution for the compressible, turbulent 
Navier-Stokes equations at large distances from the finite body. The resulting equations could then 
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serve as the farfield boundary condition, and would overcome the problem of computing the 
unbounded flow over a finite body using a bounded computational region. 

The k-c turbulence model is known to overpredict the spreading rate of turbulent shear layers, 
and therefore underpredict the length of the base recirculation region. Oh [57] has developed a 
model for the pressure-dilatation correlation applicable to high Mach number free turbulent shear 
layers which would reduce the spreading rate and improve the prediction of the length of the 
recirculation region. Use of the additional modeled term could improve the prediction of base 
pressure, and therefore more accurately predict the drag of the axisymmetric body. 

These computations show that the use of Navier-Stokes computations for preliminary configur-
ation design is at hand. The use of optimization concepts can be applied to viscous flow calculations 
in an intelligent manner which yields reasonable results in relatively short computational times. 
This brings the advantages of optimization to the level of the practicing engineer for making 
informed preliminary design configuration choices. 
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